mmcv安装使用

TianFeng mmlab119阅读模式

mmcv安装使用

一、前言

MMLab是香港中文大学深圳研究院的一个计算机视觉和深度学习研究团队,由教授陈嘉杰(Jiajie Chen)领导。该团队成立于2017年,致力于图像识别、目标检测、语义分割、人脸识别等领域的研究。MMLab开发了许多开源的深度学习工具包和算法,如PyTorch中的Detectron2、mmdetection、mmcv等,这些工具包和算法在学术界和工业界都有广泛的应用。MMLab的研究成果在计算机视觉领域享有很高的声誉,团队成员也经常在国际计算机视觉顶级会议上发表论文和做报告。

二、mmcv安装

MMCV 是一个面向计算机视觉的基础库,基本支持所有的 OpenMMLab 项目:

https://github.com/open-mmlab

mmcv安装使用

1.安装方案a

https://mmcv.readthedocs.io/zh_CN/latest/get_started/installation.html

mmcv安装使用

根据自己的方案选择版本安装

2.安装方案b

https://download.openmmlab.com/mmcv/dist/cu113/torch1.10.0/index.html

根据自己的cuda版本,torch版本(1.x.0和1.x.1兼容),修改上面网站打开,选择安装的mmcv版本,Python版本,Windows系统,下载预编制whl文件,pip install 安装

mmcv安装使用

如果是2.0前的版本,还需要

pip install opencv-python

三、mmclassification使用

mmcv1.4.2

代码:链接: https://pan.baidu.com/s/1A0U7SQStbqNqxDR6lgSYbw 提取码: 7yn3

mmclassification是MMLab开源的一个基于PyTorch的图像分类工具包。下面是mmclassification文件目录的基本解释:

1.目录说明

mmcv安装使用

  • configs 包含模型配置文件,包括各种骨干网络、分类器、数据增强等参数的设置。包含所能使用的模型文件,一般选择一个配置作为你的模型,假如你选择了resnet中一个配置,如下:他会读取以下四个文件,生成一个新的配置文件,

mmcv安装使用

这四个文件包含了模型加载,数据处理,数据加载,运行输出,日志保存等,也就是一整个流程,数据会根据配置文件走完整个流程,

  • mmcls 主要代码目录,包括数据加载、模型定义、训练和测试等功能的实现。configs一般是从这调用模型文件,数据处理文件进行处理。
  • tools 包含训练和测试的脚本,以及模型转换的脚本。以及可视化工具
  • tests/:测试用例目录,包含一些简单的测试用例。
  • docs/:文档目录,包含了mmclassification的使用文档和API文档。
  • requirements/:依赖文件目录,包含了mmclassification所需的依赖库。
  • LICENSE:开源协议文件。
  • README.md:项目说明文件。

在使用mmclassification时,可以通过修改configs/目录下的配置文件来改变模型的参数设置,然后使用tools/train.py脚本进行训练,使用tools/test.py脚本进行测试。

2.数据集

这是一个花朵数据集,有102类别,就是文件名,

mmcv安装使用

把所有图片放到一个文件夹下,并生成一个索引文件train.txt,

import numpy as np
import os
import shutil

train_path = './train'
train_out = './train.txt'
val_path = './valid'
val_out = './val.txt'

data_train_out = './train_filelist'
data_val_out = './val_filelist'

def get_filelist(input_path,output_path):
    with open(output_path, 'w') as f:
        for dir_path, dir_names, file_names in os.walk(input_path):
            if dir_path != input_path:
                label = int(dir_path.split('\\')[-1]) -1
            #print(label)
            for filename in file_names:
                f.write(filename +' '+str(label)+"\n")

def move_imgs(input_path,output_path):
    for dir_path, dir_names, file_names in os.walk(input_path):
        for filename in file_names:
            #print(os.path.join(dir_path,filename))
            source_path = os.path.join(dir_path, filename)
            # 复制文件1到文件二
            shutil.copyfile(source_path, os.path.join(output_path,filename))

get_filelist(train_path,train_out)
get_filelist(val_path,val_out)
move_imgs(train_path,data_train_out)
move_imgs(val_path,data_val_out)

左边是图片名称,右边把文件夹作为类名,然后通过索引在这取数据

mmcv安装使用

3.根据自己数据修改文件

默认1000类别,然后修改成自己类别,输出会把类别转换成数字类别对应的名称

mmcls/datasets/imagenet.py

mmcv安装使用

 

配置文件中type都是指向mmcl中类名的,所以要修改成符合自己任务,

执行train.py
../configs/resnet/resnet18_8xb32_in1k.py

会在tools/work_dirs/resnet18_8xb32_in1k/resnet18_8xb32_in1k.py生成一个总的配置文件,在这改比较好改,首先需要把数据路径改成自己的,都需要改,还有输出类别,反正就根据自己情况改。

mmcv安装使用

指定预训练权重,

load_from = '../mmcls/data/resnet18_8xb32_in1k_20210831-fbbb1da6.pth'

改完重命名一下,重新指定配置文件路径运行,权重文件保存在tools/work_dirs下,

4.demo测试

demo/image_demo.py

image_03313.jpg ../configs/resnet/today_resnet18_8xb32_in1k.py ../tools/work_dirs/resnet18_8xb32_in1k/epoch_100.pth

mmcv安装使用

5.测试结果

tools/test.py

../configs/resnet/today_resnet18_8xb32_in1k.py ../tools/work_dirs/resnet18_8xb32_in1k/epoch_100.pth --show
--show-dir ../tools/work_dirs/resnet18_8xb32_in1k/val_result
--metrics accuracy recallmmcv安装使用

结果保存在../tools/work_dirs/resnet18_8xb32_in1k/val_result

6.数据增强可视化

../../configs/resnet/today_resnet18_8xb32_in1k.py  --output-dir ../work_dirs/resnet18_8xb32_in1k/vis/vis_pipeline
--phase train --number 10 --mode pipeline/transformed

../work_dirs/resnet18_8xb32_in1k/vis/vis_pipelinemmcv安装使用

7.日志分析

tools/analysis_tools/analyze_logs.py

plot_curve ../work_dirs/resnet18_8xb32_in1k/flower-100epoch.json --keys loss accuracy_top-1
cal_train_time ../work_dirs/resnet18_8xb32_in1k/flower-100epoch.json

mmcv安装使用

 

相关文章
weinxin
我的公众号
微信扫一扫
TianFeng
  • 本文由 发表于 2023年 5月 24日 16:16:45
  • 转载请务必保留本文链接:https://tianfeng.space/1282.html